Barr, A., & Feigenbaum, E. A. (1981). The handbook of artificial intelligence (Vol. 1). William Kaufmann.
Chi, R. P., & Snyder, A. W. (2012). Brain stimulation enables the solution of an inherently difficult problem. Neuroscience Letters, 515(2), 121–124.
Chronicle, E. P., Ormerod, T. C., & MacGregor, J. N. (2001). When insight just won’t come: The failure of visual cues in the nine-dot problem. The Quarterly Journal of Experimental Psychology: Section A, 54(3), 903–919.
Guilford, J. P., Wilson, R. C., Chrlstensen, P. R., & Lewis, D. J. (1951). A factor-analytic study of creative thinking: Part i. Hypothesis and description of tests. Psychology Laboratory Report.
Johnstone, A. H. (1982). Macro- and micro-chemistry. School Science Review, 64, 377–379.
Kunda, M. (2021).
The AI triplet: Computational, conceptual, and mathematical representations in AI education.
https://arxiv.org/abs/2110.09290
MacGregor, J. N., Ormerod, T. C., & Chronicle, E. P. (2001). Information processing and insight: A process model of performance on the nine-dot and related problems. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(1), 176.
Nersessian, N. J. (2008). Creating scientific concepts. MIT press.
Newell, A., & Simon, H. A. (1975). Computer science as empirical inquiry: Symbols and search. In ACM turing award lectures.
Piccinini, G., & Maley, C. (2021). Computation in physical systems. In E. N. Zalta (Ed.),
The Stanford Encyclopedia of Philosophy.
https://plato.stanford.edu/archives/sum2021/entries/computation-physicalsystems/.